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The author considers self-similar solutions of  a system of nonlinear equations describing unsteady-state 

diffusion of  a vortex with a heat source inside it with power dependences of  the viscosity and the thermal 

conductivity on the temperature being included in the solution. Functions having a reasonable physical 

interpretation are singled out from the set of  possible solutions. 

1. In estimating the leveling of the vorticity of viscous liquids the following expression is ordinarily used 

for unsteady-state diffusion of the vortex [1 ]: 

w = (F/2~vt)  exp ( -  r2 /4v t ) ,  (1) 

with the corresponding distribution of the circumferential velocity 

V~ = (F/2~r) [1 - exp ( -  r2 /4v t ) ] .  (2) 

However, a general theoretical analysis and experimental data show that real diffusion processes are more 

complicated than those predicted by Eqs. (1) and (2) and depend on many factors, including dynamic and thermal 

effects. In some cases Eqs. (1) and (2) cannot be considered satisfactory. In particular, when Eq. (2) is used, the 

total kinetic energy Ek of the vortex in the volume 0 < r < c~ turns out to be infinitely large at any moment of the 

diffusion process. It is evident that in real liquids the appearance of such vortices is doubtful. Moreover, the relations 

governing unsteady-state diffusion of vortices obtained using Eq. (1) are rather difficult to comprehend. The 

distribution oJ(r, t) found in [1 ] by the superposition method shows that a vortex restricted at t = 0 (r < a) spreads 

instantaneously over the whole space (0 < r < oo) at any infinitesimal time t > 0. 
At present there are two models free from this drawback that are characterized by a finite velocity of 

propagation of vortices. One of them is based on a generalized system of linear Onsager relations suggested by A. 

V. Luikov [2 ]. It leads to hyperbolic transfer equations and gives a defined front of disturbances that propagates 

with a finite velocity. The second model, which also leads to a finite velocity, is based on solution of nonlinear 

parabolic equations in which the transfer coefficients depend on the unknown functions (temperature, velocity, etc.) 

[3]. 
In what follows we will consider the second model as applied to the problem of the thermal effect upon the 

diffusion of a vortex with a heat source at the center. In the case of an incompressible viscous liquid a thermal 

effect on the velocity field can occur, provided that the viscosity coefficient depends on the temperature. 
Consequently, the equation for the vortex should be supplemented with a thermal equation in which the thermal 
conductivity can also depend on the temperature. As a result, a conjugate problem arises, which is described by 

the system of nonlinear equations 
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Solutions of this system are sought in the self-similar statement with the boundary  conditions T --, Tor and 

V~o ~ 0 as r ~ oo. Following [4 ], the function 0 = (T/To~) - 1 ~ 0 at r ~ oo is substituted for T and the power 

relations/z = ~0 0s and 2 = 2oo0 q are assumed. Then,  characteristic scales of velocity, space, and time are introduced: 

V0, r0 = ~ ,  and to. Accordingly, in what follows, the quantities V~,, r, and t are dimensionless throughout.  

The time to can be adopted on the basis of a prescribed value of the dimensional function T(r, t), at a certain time 

at a chosen point r. 

Formulated in this way, the system of equations (3) and (4) has many solutions. Thei r  analysis will be 

carried out in the most generalized form to single out solutions that have a reasonable physical interpretat ion and 

are free from the drawbacks inherent  in Eqs. (1) and (2). 

2. The  form of solutions of Eqs. (3) and (4) depends on the ratio of the exponents s and q. Only the case 

s = q will be considered here. It holds for gases and corresponds to constant Pr  = #Cp/2. A possible form of the 

solutions is their  representat ion by the functions V~o = rn~o(r]) and O = rPf(~/), where r/ = rt m, m = 1/(pq - 2), and 

n a n d  p are  a rb i t r a ry  numbers .  Along with this, a second representa t ion  V~o = rt(n-l)/(2-pq)g(r]) a n d  0 = 

tP/(2-pq)h(rl) is possible, where gOD = r/-~+n~o(r/) and hOD = ~lPf(~l). If in the second representat ion V~ and 0 are 

substituted into Eqs. (3) and (4), the following equations are found for determining h0?) and g0?): 

Prz/ (O h _ p h )  + ~ ( r l ) = O  (rlhq]~)'+ 2 - pq (5) 

r} [(1 - n) g + r / g ] = 0  rl (hq'g)'+ 3hqg + 2 - pq (6) 

where ~(r}) = (QPrto/pcpT=)rt(1-p(q+l))/(2-pq); the dot denotes differentiation with respect to r/. 

Equations (7) and (8) are solved with the following boundary conditions: h(0) = h0, g(0) = go, h(oo) = 

g(oo) = 0. In the energy estimation of the solutions, the enthalpy 

r p + 2  

E t = 27rr~ocpToo f 0 (rl) rdr = 27r~oCptoT = t 2-pq Jt (rl), 
0 

(7) 

where 

ar t (r]) = j" r] p+I f (r]) dr] E .~" ?]h (r]) dr/, 
0 o 

and the kinetic energy of the vortex 

2(n+l) 

Ek = ~P ~ r  2 rf V~ rdr = xCbtOt 0 V~o t 2-pq Jk (r]) , 
0 

(8) 

where 

2n+ 1 2 

0 0 

are considered. 
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It is evident that from the value of integrals (7) and (8) it is possible to evaluate the physical validity of 

solutions. In the case when the integrals are based on the whole volume, their values depend strongly on the 

asymptotic behavior of h(~) and g(r/) at ~/-~ oo. This is seen from the general relations for ]t(oo) and Jk(~O) obtained 
by integration of Eq. (5) and Eq. (6) (preliminarily multiplied by gq2) with respect to ~/between 0 and oo: 

(p + 2) : t  (~)  = arQ (2 - pq)/Pr + [r/2h (r/) + r/J~ (r/) (2 - pq)/Pr]~l= ~ , (9) 

where 

.rQ = 
0 

2J k (oo) (n + 1)/(2 - pq) = - 2 f r]3"gZhqd~ + [r]3h q (g2) -F r/4g2/(2 - pq)]rt=o o . 
o 

(10) 

The behavior of gOD and h(r/) depends, in turn, on p and n. The character of these relations will be considered 

preliminarily without thermal effects (q = 0). 
3. First of all, it should be noted that the solutions h(p, r I) with p > 0 cannot satisfy the condition h(p, 

oo) = 0. This can be shown by representing ~'(r/) = ~ ~kt] k and seeking a solution in the form of the series h 
k=O 

= h0 [ 1 + ~ hk(p)~/k]' where, after substitution of the series into Eq. (5), the coefficients hk(p) are determined by 
k=l 

simple recurrence relations. Because of this the values p > 0 will not be considered further. ~o 

For p < 0 it is useful to seek solutions of Eq. (5) in the form of the series h(p, r/) - h0[1 + Y~ Hk(p)~ Ir ] exp 
k=l 

( -~2 /2 ) ,  where ~ = r/V-Pr-f-/2-. 

Representing the heal release function as ~(~/) = (Y. ~ )  exp ( - ~ 2 / 2 ) ,  it is easy to obtain an expression 

for the even coefficients of the series: ~=0 

H2m = D k p + 2 (2m) 2 s=l (2s) 2 p + 2 + 2s 

and for the odd coefficients of the series: 

~'2m m ~2s-2 (p + 2m + 1 
H 2 m + l =  ( 2 m + 1 ) 2  s~X (2ss-~l)2 D ( p + 2 s + l  

; m = 0 ,  1,  2 ,  . . . ,  (12) 

where 

The solutions obtained satisfy the condition h(p, oo) = 0 and describe the temperature variation ~ = 

h(~)/t Ipl/2 caused by a localized heat source present at the point r = 0 at the time t = 0. Without volume heat 

release ( ~ =  0), H2,n+l = 0 and H2m vanishes for integral even values of Ipl ,  starting from m = - 1  + Ipl /2 .  
In this case the  solutions h(p,~) are e lementary  functions: in particular, for Ipl = 2, 4, 6 . . . .  we have 
h ( - 2 ,  ~) = h0 exp ( - ~ 2 / 2 ) ,  h ( - 4 ,  ~) = ho(1-~2/2)  exp ( -~2 /2 ) ,  h ( - 6 ,  ~) = ho(1 - ~2 + ~4/8 ) exp ( - ~ 2 / 2 ) ,  

etc. It should be noted that for p = - 2  we have the well-known function of the heat source 0(~) = (ho/t) exp 
( -~2 /2 ) .  

For nonintegral values of I pl the series for h(p, ~) is not reducible to elementary functions and therefore 

Eq. (5) was integrated numerically. Results of the inIegration are presented in Fig. la.  It is noticeable that  the 
value p = - 2  is critical. For 0 > p -> - 2  the functions h(p, ~) > 0 over the whole range 0 < ~ < oo. For p < - 2  
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Fig. 1. Tempera ture  functions h(r/) versus the parameter p < 0 (a): 1) p 

= -0 .5 ;  2) - 1 ;  3) -1 .5 ,  4) - 2 ;  5) -2 .5 ;  6) - 3 ;  7) - 4 ;  8) - 6 ;  velocity 

functions versus the parameter n < 0 (b): 1) n = -0 .5 ;  2) - 1 ;  3) -1 .5 ;  4) 

- 2 ;  5) - 2 . 5  6) -3 .5 ;  7) -4 .5 ;  8) - 6 ;  Pr = 0.7. 

the function h(p, ~) > 0 at 0 < ~ < ~*, where ~* decreases as IpI increases; at ~ > ~* the function oscillates so 

that areas with negative and positive h and, accordingly, 0 alternate. 

Another distinction is that according to Eqs. (7) and (9) for 0 > p > - 2  the enthalpy Et(oo) = ~ and for 

0 >p > - 2 ,  Et(oo) = 0; meanwhile, for p = - 2 ,  Et(oo) = 4zztokTooho, i.e., the enthalpy is finite, nonzero, and 

constant in time. Proceeding from these values of Et(~o), in estimating thermal disturbances from a localized source, 

it is expedient to use the function h ( - 2 ,  ~), which is ordinarily done in practice. It is possible in principle to also 

use the functions h(p, ~) fort p < - 2 ,  but then it is difficult to interpret physically the appearance of regions of 

with negative 0 at any infinitesimal times t > 0. 

4. In a similar way, we will consider a family of solutions g(n,  r 1) of Eq. (6) for q = 0. First of all, it should 

be noted that the solutions are invalid for n > 0 since g(n, oo) = oo. For n < 0, the solutions can be expressed in 
oo k 

the form of the series g(n, r/) = g0(1 +Xg.kr/ ) exp (-r12/4),  where all the odd coefficients gk are zero and the 

even coefficients are defined by the expressions 

g2m (n) = .(n + 3 ) ( n  + 5 ) . . .  (n +. 2m - 1).  
2 am (m !)2 (m + 1) 

k = 2 m ;  m =  1, 2 . . . .  (14) 

The series with these coefficients converges rapidly at any finite values of r/. For integral odd I n I the series 

is truncated, starting from m = (Inl  + 1)/2, and the integrals in Eq. (6) are reduced to elementary functions. In 

particular, for n = - 3 ,  - 5  ... we have g ( - 3 ,  r/) = go exp ( - r /2 /4) ,  g ( - 5 ,  ~/) = g0(1-r/2/8) exp (-~/2/4) ,  etc. An 

exact solution can be also obtained for n = - 1 :  g ( - 1 ,  r / ) =  g0[1-exp  (-rlz/4)]/r12", it is this solution that  

corresponds to distributions (1) and (2). 

Equation (6) was solved numerically for nonintegral I n I. Results of the solution are given in Fig. lb. The 

value n = - 3  is critical for the family of curves obtained. For 0 > n >__ - 3 ,  the function g(n, ~1) decreases 

monotonically as r/--, oo, vanishing only at r/ = o% and for n < - 3  regions of r /with negative values appear in the 
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functions g(n, 71). For 0 > n ___ - 1 ,  the kinetic energy of the vortex is Ek(OO) = oo; for - 1  > n _> - 3 ,  Ek(OO) is 

finite and decreases monotonically with increase in I n I, in particular, it takes the value Ek = 2Z/~otoV~oo/t 2 for n 

-3 ,  

With these  values of Ek(OO), reasoning as in the analysis of h(p, ~), physical evaluation of velocity 

disturbances from a vortex source concentrated initially at the point r = 0 can be made conveniently, using the 

solutions g(n, r 1) for - 1  > n --- - 3 .  Meanwhile, contrary to the generally accepted opinion, the function g ( - 1 ,  r/), 

corresponding to Eqs. (1) and (2), should not be used in evaluations, since Ek(oo) = co. The choice of the necessary 

value of n from the range - 1  > n _ - 3  can be related to the boundary value of the vorticity at a point r, for 
example, eo = 2go/t (Inl+l/2) at r = 0. 

5. We will now consider the solution of Eqs. (5) and (6) in the case of an effect of the temperature field 

on the velocity field (q ~ 0). A simultaneous analytical solution of the equations can be found for n = - 3 ,  p = 

- 2 ,  and @ = 0: 

Pr  q ] , h = h  0 1 4 (1  +q)~ /2  t/q (15) 

Pr q ] (16) g = go 1 4 (1 + q) ~12 1/(Vr qhqo) 

For the axisymmetric problem considered, solution (15) is similar to the relation obtained in [4 ] for the 
plane problem and is characterized by the front r/* = 2~/(1 +q)/(qPr) bounding the heated area, which expands at 

a finite rate. In terms of the variables r and t, the front is determined by the relation 

r* = 2 t  2/(l+q) ~/(1 + q)/(q Pr) . (17) 

It should be noted that the exponent in Eq. (15) coincides with that in [4 ], but the exponents in formula 

(17) and a similar expression in [4] are different: 1/(2 + q) is replaced by (2/(1 + q). It follows from (17) that 

without heat interaction (q = 0) r = oo at any time. 
Velocity function (16) is similar to h0?) and indicates that under  unsteady-state  conditions the limited 

region of vorticity 0 < r < r*, expanding in accordance with (17), can exist. This is an entirely new physical result 

occurring for q > 0. 

The integrals 

2h0 (18) 
Jt = ~ [1 - (1 - ~)(l+q)/q], 

2 
go h~ q (1 + q)2 ~)2~+1 (19) 

J k = ( l + P r q h q o ) ( 2 + P r q h ~ ) { 1 - ( 1 -  [1 + (2~ + 1 ) ~ ] } ,  

where 0 -< ~ = r/2/r] .2 -< 1 and a = h~qPr, entering into Eqs. (7) and (8) correspond to functions (15) and (16). 

For these integrals the estimates hold at r] -~ 0: 

( ) I ] 2 _ r/ 
1 Prt/2 and Jk-- 'go(r]  2 /4)  1 3h~(1 + q )  J t -->h0(r /2/2)  1 - g  l + q  

Using these estimates, it will be found that near the vortex center, the change in the enthalpy caused by q is equal 

to 

q 4 
AE t = E t (q ,  r/) - E t (0 ,  7) = (Jr/8)/~oCptoToo Pr h o ~ ~7 
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Fig. 2. Effect of the parameter q > 0 on the functions h(r/) for different 

p < 0  (a): 1) p = 3 a n d q =  1;2)  2.5 and 1;3)  2.5 and 2; 4) 2 a n d 2 ; 5 )  2 

and 1; 6) 1 and 1; 7) 1.5 and 0.5; on the functions g(r/) for different p < 0 

a n d n < 0  (b): 1) p = 2 ,  n =  1, a n d q = 0 ; 2 )  2, 1, a n d l ; 3 )  2, 1, and 1.5; 

4) 2, 1, and 2; 5) 2, 1, and 3; 6) 2, 1, and 5; 7) 2, 4, and 1; 8) 1, 1, and 1; 

9) 1, 3, and 1; 10) 4, 1, and 2 for Q = 0 and Pr = 0.7. 

and the change in the kinetic energy is 

I / 1(12/11 hffqr]2 -- 1 -  
AE k = (Jr/4)/aotoV~ot-2rl 4 t 2q/(l+q) 1 3 1 + q -~r/ . 

It is typical that AE t > 0 and AE k > 0, i.e., for q > 0 in the neighborhood of r = 0 both the thermal and kinetic 

energies increase. 

Analytical solution of Eqs. (5) and (6) can also be found for ~ =  ~1~7, which corresponds to the volume 

heat release Q = ~ l ( t / t0 ) - lpcpToo/ (P  r to). Integration of Eq. (6) results in the relation 

2 h hqdh 

Z+[o 4 ~'1 + Pr h / ( i  + q) = 0 ,  (20) 

from which the boundary of the region is found, and beyond it h = 0: 

.2 (1 + q) h i 1 xqdx 
~/ = 4 Pr Jh (q, ~1) ,  where Jh (q, g'l)  = f x + ~'1 (1 + q ) / (P r  h0) " (21) 

0 

It follows from (20) that a t  ~~ 1 > 0, r]* is smaller than for g'l = 0, i.e., the boundary of the heated area 

is closer to r = 0. With account for Eq. (21), a sufficiently accurate approximation h = ho(1-rl2/~l*2) l/q is obtained 

from (20). Then, substituting this approximation into Eq. (6) an exact solution is found for the function gOD: 

g (~) = go (1 - ~2/r/ '2 ) J h / P r 4  . (22) 
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Fig. 3. Effect of the parameters of volume heat release Q on the temperature 

functions h(r/) for different p < 0 and q > 0 (a): 1) Ipl = 3, q = 1, A = 0, 

B = 1, co = 5,/~ = 1; 2) 3, 1, 0, 1, 5, 0; 3) 2, 1, 0, 1, 5, 0; 4) 2, 0.5, 1, 0.5, 

1, 1; 5) 2, 0.5, 1, 0.5, 4, 1; 6) 2, 0.5, 1, 0.5, 0.1; 7) 2, 1, 1, 0, 0, 0; 8) 2, 1, 

1, 0, 0, 2; on the velocity functions g(r/) for different q > 0, p < 0, n < 0 (b): 

1) Ipl = 3, q = 1, }hi = 2, A = 0, B = 1, co = 5,/~ = 1; 2) 3, l ,  1, 9, 1, 

5, 0; 3) 2, 1, 1, 0, 1, 5, 0; 4) 2, 0, 1, 1, 0, 0, 0; 5) 2, 1, 1, 1, 0, 0, 0; 6) 2, 

1, 3 ,  1, 0, 0, 0; 7) 2, 1, 1, 1, 0, 0, 2; Pr = 0.7. 

Thus, for Q ~ 0, q > 0, there is a bounded region (0 < r/ < ~/*) with localized vorticity. Meanwhile, for q 

= 0 and Q ;~ 0 this region is spread over the entire space. It should be emphasized that these relations are found 

for p = - 2  and n = - 3 .  However, solutions with the same properties can also be found for different values of p 

and n. To find them, Eqs. (5) and (6) were analyzed numerically. 

6. Particular results of the analysis are as follows. For q ~ 0 not for all p does a bounded heated area occur. 

This is illustrated by curves 6 and 7 in Fig. 2a for p = - 1  and 1.5, for which the asymptotic behavior h07) -* 0 at 

r / ~  r is monotonic. As regards the presence of localized areas (0 < r / <  r/* < o~), the value p = - 2  is critical: for 

0 > p > - 2  there are no such regions, and for p < - 2  they exist for all q > 0. The effect of q itself decreases as 

Ipl decreases; in particular, for p = - 1  and q = 0 the relation h(0, r/) (curve 2 in Fig. la) differs but slightly from 

the relation h(1, r/) for q = 1 (curve 6 in Fig. 2a). 

At r / ~  0 the effect of q consists in an increase in the values of h(q,  rl) , i.e., one of the results of the effect 

of q is an increase in the temperature in the neighborhood of the point r = 0. However, as r/ increases, h(q,  rl) 
drops abruptly, starting from a certain value, and for p _< - 2  it vanishes at r/ = r/ . 

The function g(r/) follows the changes in h(r/) in general. In particular, for 0 > p > - 2  the function g(r/) is 

characterized by the same asymptotic behavior as h(r/) (curves 8 and 9 in Fig. 2b). Similarly to hOD, for all 

p _< --2, there exists a bounded eddying zone with the same properties that are enumerated in Sec. 5 for the 

analytical solution for p = - 2 .  This zone decreases as q, Ipl ,  and Inl increase (in Fig. 2b curves 1 - 6  for 
p = - 2 ,  n = - 1  and various q; curve 7 for p = - 2  and n = - 4 ) .  A general analysis shows that the gradient 

h(r/) has the greatest effect on changes in g(r/). 
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A change in the function ~'(t/) is a means for affecting h(t/). In a numerical analysis of Eqs. (5) and (6), 

the function ~(t/) = (A + B sin cot/) exp (-fit/) was considered, which is physically sufficiently general and, in 

particular, includes the possibility of heat absorption (~< 0 for A = 0 and t/ > t/0 = zrco). In the last case a specific 

function h(t/) with inflections occurs (curves 2 and 3 for p = -3 ,  - 2 ,  co = 5, t/0 = 0.628, and fl = 0 in Fig. 3a). 

However, the inflections disappear for a value of the damping factor fl > 0, for which the heat release Q decreases 

exponentially as the distance from r = 0 increases; ultimately, for fl = 1 and Q ~ 0 the function h(t/) differs but 

slightly from the curve h(t/) obtained for Q = 0 (curves 1 in Figs. 2a and 3a). These characteristics of the behavior 

of h(t/) are also reflected in the functions g(t/) in Figs. 2b and 3b. 

It should be noted that upon supply of heat (Q > 0), the vortex is relatively stabilized. This is manifested 

in the fact that at 0 < t / <  t/* the values of g(t/) are higher than those for Q -- 0, for any value of n. The greatest 

excess occurs for A = 1 (curves 4 - 6  in Fig. 3b). It is noticeable that the points at which g(t/) = 0 coincide with 
a~ 

similar points t/ for h(t/). However, not in all cases do the functions g(t/) follow local changes in h(t/). In particular, 

curves 2 and 3 in Fig. 3b, corresponding to curves 2 and 3 in Fig. 3a, do not have inflection points. In general, the 

effect of Et(t/) on Ek(t/) is integral; for all n, larger AEk correspond to larger AEt. 

Thus, the nonlinearity of the system of equations (5) and (6) caused by q > 0, which is a parameter of 

the effect of the temperature field on the velocity field, generates localized unsteady-state thermal and eddying 

areas for p _< - 2  that expand at a finite rate. It is important that whereas for q = 0 only solutions for p = - 2  and 

- 1 n ___ - 3  can be considered physically reasonable, for q > 0 the range of physically reasonable values of p and 

n expands: p ___ - 2  and n < -1 .  

N O T A T I O N  

w, vorticity; V~,, circumferential velocity in the vortex; r, radial coordinate; t, time, v and it, kinematic and 

dynamic viscosities; 2, thermal conductivity; p, density of the medium; Pr, Prandtl number; Q and ~, volume heat 

release and its dimensionless value; n and p, exponents in power dependences of ?t and ;t on temperature; n, p, 

parameters in self-similar solutions; t/ = rt m, reduced coordinate; m = (pq-2) -I', hCt/). , g(t/), temperature and 

velocity functions; Et and Ek, enthalpy and kinetic energy of the vortex; A, B, co, r ,  parameters in the heat release 

D(a+P~ function; Jt and Jk, integrals in Et and Ek; Jh, integral depending on the heat release; ~fl+p), parametric 

coefficients in the series; Hk, gk, ~k, coefficients in the series for h, g, and ~;  t/ , reduced coordinates of the 

boundaries of the heated and eddying areas; AEt = E~(q) -Et(0) and AEk = Ek(q)-Ek(0), changes in the enthalpy 

and kinetic energy caused b y  the effect of q. 
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